An Analytical Model for CMUTs with Square Multilayer Membranes Using the Ritz Method
نویسندگان
چکیده
Abstract: Capacitive micromachined ultrasonic transducer (CMUT) multilayer membrane plays an important role in the performance metrics including the transmitting efficiency and the receiving sensitivity. However, there are few studies of the multilayer membranes. Some analytical models simplify the multilayer membrane as monolayer, which results in inaccuracies. This paper presents a new analytical model for CMUTs with multilayer membranes, which can rapidly and accurately predict static deflection and response frequency of the multilayer membrane under external pressures. The derivation is based on the Ritz method and Hamilton’s principle. The mathematical relationships between the external pressure, static deflection, and response frequency are obtained. Relevant residual stress compensation method is derived. The model has been verified for three-layer and double-layer CMUT membranes by comparing its results with finite element method (FEM) simulations, experimental data, and other monolayer models that treat CMUTs as monolayer plates/membranes. For three-layer CMUT membranes, the relative errors are ranging from 0.71%–3.51% for the static deflection profiles, and 0.35%–4.96% for the response frequencies, respectively. For the double-layer CMUT membrane, the relative error with residual stress compensation is 4.14% for the central deflection, and ́1.17% for the response frequencies, respectively. This proposed analytical model can serve as a reliable reference and an accurate tool for CMUT design and optimization.
منابع مشابه
Ritz Method Application to Bending, Buckling and Vibration Analyses of Timoshenko Beams via Nonlocal Elasticity
Bending, buckling and vibration behaviors of nonlocal Timoshenko beams are investigated in this research using a variational approach. At first, the governing equations of the nonlocal Timoshenko beams are obtained, and then the weak form of these equations is outlined in this paper. The Ritz technique is selected to investigate the behavior of nonlocal beams with arbitrary boundary conditions ...
متن کاملNonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach
In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...
متن کاملStatic Deflection of Hinged-Hinged piezoelectric Multilayer Beam Under Different Loading Conditions
In this paper at first introduced constituent equations for piezoelectric and then by the help of this equations, internal energy of hinged-hinged piezoelectric multilayer beam was computed. Then by the principle of minimum potential energy and Rayleigh -Ritz method the bending curvature equation of hinged-hinged piezoelectric multilayer beam under concentrated moment, concentrated force, unifo...
متن کاملNonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach
In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...
متن کاملUniaxial Buckling Analysis Comparison of Nanoplate and Nanocomposite Plate with Central Square Cut out Using Domain Decomposition Method
A comparison of the buckling analysis of the nanoplate and nanocomposite plate with a central square hole embedded in the Winkler foundation is presented in this article. In order to enhance the mechanical properties of the nanoplate with a central cutout, the uniformly distributed carbon nanotubes (CNTs) are applied through the thickness direction. In order to define the shape function of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Micromachines
دوره 7 شماره
صفحات -
تاریخ انتشار 2016